

A TOUR TO VISUAL STUDIO

o Creating Websites

CREATING WEBSITES

You start Visual Studio by choosing Start » All Programs » Microsoft Visual Studio 2012 » Microsoft Visual
Studio 2012. When Visual Studio first loads, it shows its Start page (Figure 4-1).

ﬂ start Page - Microsoft Visual Studio CQuick Launch (Ctri+ Q) b - a b4
HLE EDIT WEW [DEBUG TEAM 501 TOOLS TEST AMALYIE WIMDOW HELP
i - . el B Amtach.. = A
— e
=] w 0O
& E
GET STARTED :':_
onal 2012 Welcome
g
What's Mew Getting Started Manage your projects in
the cloug
Recently opened _
ﬂppliﬂﬂtiﬂnﬁ What s new i Visual Studic :_"“Jll g started with Visua .:4!||hu'.- I'.. sElugpour |
Soudio woject and connect it to Yisua
\‘ Nt 's mew n ME ramevsork . r‘!- " e
Cietting started with Blenc
Seewhat's new, or sign ug fio
Learn more abaouwt Visual Studio an Bccounk
Choose whether . _
Niscover sxtensions, add 5
you want to HEE[] and samples
this []E.QE ﬂpﬂn What iz an MEDN subscription?
after opening or \
creating a project.
Choose if you
want to see this
page when you _~

start Visual
Studio. Links to online

CREATING AN EMPTY WEB APPLICATION

To create your first Visual Studio application, follow these steps:

1. Choose File » New » Web Site from the Visual Studio menu. The New Web Site
dialog box appears, as shown in Figure 4-2.

1. Choose the 2. Choose the 3. Choose the
language. version of the .NET. website template.

New Web e &)
b Recent [.NET Frameworkd5 | ']SMW |D-§Au“ vI ;;: Search Installed T= 0 -
4 Installed

Ol-j ASP.NET Web Forms St | Visual €= B
4 Templates An empty Web site
Visual Basig E .
ASPNET Web Site (Razor v1) | Visual C=
Visual €= -)
e ASP.NET Web Site (Razor \2) | Visual C#
¥ Online
ASP.NET Empty Web Site Visual C&
@ ASP.NET Dynamic Data Enbib.. Visual G
-~
d WCF Service Visual C=
=Cr
|i'||| ASP.NET Reports Web Site Vigual C=
Web location: [Fitc System '] D:\Bxamples\ WebSitel v I Browse.., l
| [ok || Concel

4. Choose the
location.

Figure 4-2. The New Web Site dialog box

USING THE SOLUTION EXPLORER

Quick Leunch (Chd=] b =
TEAR S TOOGLS ABALYZE WINDOW HELP
B Google Chrome = Debug =

u SampleSite.sin [2) - Microsoft Yisual Studic
ELE EDMT WEW WWEBSITE BUILD DEBUG
‘o - T~ g

TEST
L

¥oooa)

ft | B -

Search Soluticn Explorer [Cirl=;]

b1 Solution ‘SampleSite.sln [Z]' {1 project)
4 [E) DA\SampleSitet

& Default.asps

D OrdinaryHimlPage bt
b) TestPegesspe

ﬂ vredy.config

Salution Bxplerer | Team Explarer

Reachy

Figure 4-4. The Solution Explorer

B =

Click the
thumbtack to
— “pin” a window in

place.

Click a tab to
expand a hidden
window.

ADDING WEB FORMS

Add New [tem - DACode' Beginning ASP.NET\Chapter0d\SampleSite) |5
4 Inctalled Sort by [D‘EFHIJ": 1"] E: Learch Insksll=d Templates 2
Visual Basic . . i =
Vel ot Web Form 3 Type: Visual C
= Aform fior Web Applications
b Online @ Content Page (Razor w2 Yisual C&
@ Emnpty Page [Razor v2) Yisual CF
@ Helger (Razor v2] Yisual C¥
@ Layaut Page (Razor w2) Yisual CF
+
gi Web AP Cantroller Class Wisuzl C¥
@ Web Page (Razor v2) Visual €2
E]] | F
Plame: TestPage aspx o Place code in separste fil=
_ Gelect mester page
Add | | Cancel

Figure 4-5. Adding an ASPNET web form

Solution Explorer

B -2 037

Search Solution Explorer (Ctrl+;)

:@ TestPage.aspx.cs
v web.config

Solution Explorer Team Explorer

»

3

fa] Sclution 'SampleSite.sin (2)' (1 project)
4 @ D:\..\SampleSite\
4 @ TestPage.aspx

Figure 4-6. A code file for a web page

ADDING WEB CQNTROLS
g

Q>
‘\r\(b:0

Figure 4-9. The design view for a page

ool

TestPage.aspx X

(lient Objects & Events = (No Events)

| <3@ Page Language="C#" AutoEventWireup="true” Codefile="TestPage.aspx.cs” I
<!DOCTYPE html>

=i<htnl>
=i<head id="Headli" runat="server'>
<{title>Untitled Page</title’
</head>
=l<body>
= <form id="forml"™ runat="server">
(= <div styles"margin: 3px">
<asp:Label I0="Labell® runat="server"
Text="Type comathing here:" />

<asp:TextBox ID="TextBoxl"™ runat="server" />
<asp:Button ID="Buttonl” runats"server" Texts"Button™ />
</div>
' </form>
 </body>
</html>

00% «~ < | m | ’

Figure 4-10. The source view for a page

F

»

@ Design | © Splt | & Source E] <ktml> E

THE VISUAL STUDIO ENVIRONMENT

— Document windows

— Toolbars
N I
1
E Solution Explorer
= Server Explorer
— —_— P
Properties window
L -
— Toolbox
— View tabs ’

USING THE PROPERTIES WINDOW

Properties * O X

Labell Systermn. Web ULWebhControls.Label

SHIEIERI=
BEorderStyle NotSet
BorderWidth
ClientlDMode Inherit
CssClass
Enzbled True
EnzbleTheming True
EnzbleViewState True

Font

The selected

oy — T 7o =

Height
SkinlD

ForeColor
Color of the text within the control,

Figure 4-11. The ForeColor property in the Properties window

The list of
—— controls on the
current web page

The priority
value

Click here to
configure the
™~ property ina
specialized
window.

INLINE CODE

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile = "Default.aspx.cs” Inherits="_Default" %»

<!DOCTYPE html:

1

2

3

4 <html>

5 <head runat="server":
6 «title>Untitled Page</title>
.

8

9

</head>
<body>
<form ID="form1" runat-="server">

10 <diw
11 <asp:Label ID="Label1" runat="server"
12 Text="Type something here:" />
13

14 <asp:TextBox ID="TextBox1" runat="server" />
15 <asp:Button ID="Buttoni” runat="server"” Text="Button"
16 </div>
17 </form>
18 </body>

19</html>

/>

THE PAGE DIRECTIVE

Defines page-specific attributes that guide the behavior of
the page compiler and the language parser that will
preprocess the page.

<%@ Page Language ="C#" AutoEventWireup = "true"
CodeFile ='"Default.aspx.cs" Inherits =" Default" %>

CodeFile: The code behind file name

Language: The programming language for the code to be
added

AutoEventWireup: It states that the page 1s automatically
bound to the methods. Indicated by a Boolean value.

Inherits : The name of the class to inherit from

CODE-BEHIND CLASS

using System;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class SimplePage: System.Web.UI.Page
{

protected void Page Load(object sender, EventArgs e)

{

}
}

ADDING EVENT HANDLERS

Type it in manually
Double-click a control in design view
Choose the event from the Properties window

protected void Buttonl_Click(object sender, EventArgs e)
d

/l Your code for reacting to the button click goes here.

;

<asp:Button ID = "Button1" runat = "server" Text = "Button" OnClick
= "Buttonl Click" />

protected void Buttonl_Click(object sender, EventArgs e)
{

TextBox1.Text = “Here 1s some sample text.”;

}

ADDING EVENT-HANDLERS

Properties
Buttonl System.Web.ULWebControls.Button
s3] @|# | =

Click Buttonl_Click

Command Buttonl Click
DataBinding Page_Load

Disposed
Init

Load
PreRender
Unload

Click
Fires when the button is clicked.

bq Samplesite.sln (2) - Microsoft Visual Studio Quick Launch (Ctri+Q) F = 0O X

FLE EDIT VIEW REFACTOR WEBSITE BUILD DEEUG TEAM SQL TOOLS TEST
ANALYZE WINDOW HELP

o < A - D - - P GeoegleChrome = Debug - S : 5 I o ;
= e a
Ml TestPageaspcs” + X QISGENERITY v E_
E #% TestPage - an..E|I.I|'.tI:lI'I1_|:|iI:|'LI:I:I|:|j':Ct5I:I'I|:|l:r. Eventfrgs = - ér'
Flusing System; + T
using System.Collections.Generic; allm
using system.Ling; 3 =
uzing System.lkdsb; -
using System.leb.UT; Ay
using System.keb.UL.Weblontrols; i
= B
Flpublic partial class TestPage @ System.Web.UI,Page E
{ L.
= protected woid Page Load{object sender, EventhArgs e) E"
L %
= =
1
¥

ijfrl I:l"-:rti:-'.:ti:d wvold Buttonl Click{ecbject sender, EventArgs i::||_|
¥

Figure 4-14. Collapsing code

INTELLISENSE

Flpublic partial class TestPage : System.Web.UI.Page

1
= protected void Page Load(cbject sender, EventhArgs e)
1
TE.‘J{tED:{l.FD|
- I = Focus
+ protected 'm:ui"ﬂI =
! J ForeColor

Col 20

(K]

m SampleSitesin (2) - Microsoft Visual Studic Quick Launch (Ctrl+ Q) P - -
FILE EDIT VIEW REFACTOR WEBSITE BUILD DEBUG TEAM 5QL TOOLS TEST
AMALYZE WINDOW HELP
o - B-@a g 9 - - P Google Chrome = Debug - S ; 5 e
E TestPage.aspr.cs™ 1 X EEGELEEHG G -
g “z TestPage - E’* Page_Load(cbject sender, Eventirgs) -
Flusing System; =
using System.Collections.Generic; »
using System.Ling; [
using System.keb;
using System.Web.UI;
using System.Web.UI.WebControls;

-
-

Jaiojdxg wea] Jauopdxg uonnjog «

saipadoiy

CATCHING ERRORS IN CODE

teageepecs < [

‘13 TestPage +"¥Page_Load(object sender, EventArgs ¢) -
using System; +

using System.Collections.Generic;
using System.Ling:

using System.Web;

using System.ueb.UI;

using System.Web.UT WebControls;

m

= public partial class TestPage : System.Web.UIl.7age

11

protected void Page_Load(cbject sender, Eventirgs e) A
{
TextBoxl.Tg_f « "Hello™;
‘Syctem. Web UL WebControls. TextBox does not contain a definition for ‘Tex' and no extension method 'Tex' accepting a first argument
of type ‘Systerm Web . UL WebControls.TextBox' could be found (are you missing ¢ using directive or en assembly reference?)

[ee—

100% ~- ¢ ’

Figure 4-17. Highlighting errors at design time

Errcr List

i-:i 2 Errors _E 0 Warnings (1) 0 Meszages

Description File Line Column Project

@1 ‘SystermnWeb UIWebControls.TextBox' does TestPage.asprcs 12 13 [CodelSamplebite),
not contain 2 definition for 'Tex' and no
extenczion method Ted accepting a first
argument of type
Syrctem. Webn ULWebControl:. TextS ox' could
be found (are you missing a using directrre
or an assembly reference’)

The name "saveflag’ does not exist in the TestPageaspacs 13 15 D CodevSamplesites
current context

Figure 4-18. The Error List window

AUTOMATICALLY IMPORTING NAMESPACES

TestPage.aspr.cs™ X

I ‘¢ TestPage ~| 2% Page_L oad{object sender, Everthrgs &

—lusing System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
uzing System.kWeb.UI;
using System.lWeb.UI.WebControls;

—|public partial class TestPage : System.Web.UI.Page

—{ protected woid Page_|lLoad{object sender, Fventlrgs e)
¢ Fil=Stream f5 - new FileStream("readme.txt”, FileMode.Open);
ro -
+ prntl%} Tl 2 =L B DE er, EventArgs el...]
1 Systern O Filebtream
Generate clazs for 'FileStream’
P (Generate new type...

Flgure 4-20. Importing a missing namespace

= | 4

m

ATTRIBUTES

<p>

Click < a href =
"http://www.prosetech.com">here to visit my
website.

</p>

WEB FORM FUNDAMENTALS
Anatomy of an ASP.NET Application

Every ASP.NET application shares a common set of
resources and configuration settings.

Web pages from other ASP.NET applications don’t share these
resources, even if they’re on the same web server.

Every ASP.NET application is executed inside a separate
application domain.

Application domains are isolated areas in memory, and they
ensure that even if one web application causes a fatal error, i1t’s
unlikely to affect any other application that is currently
running on the same computer.

Application domains restrict a web page in one application from
accessing the in-memory information of another application.

Each web application is maintained separately and has its own
set of cached, application, and session data.

IS Web Server

i R Ty 4 R Ty

Weh Configuration Weh Configuration
Pages Files Pages Files
Y A %,
i T '
Web Application and Web Application and
services Session Data services session Data
b . b

' R T i A Ty

Web Configuration Web Configuration
Pages Files Pages Files
b o N
& Ny i
Web Application and Weh Application and
Services Session Data services Session Data
Y "y Y,

Figure 5-1. ASPENET applications

ASP.NET FILE TYPES

Ends with .aspx These are ASP.NET web pages.

Ends with .ascx These are ASP.NET user controls
User controls allow you to develop a small piece of
user interface and reuse it in as many web forms as
you want without repetitive code

web.config This is the configuration file for your ASP.NET
application.
It includes settings for customizing security, state
management, memory management

global.asax This i1s the global application file.
You can use this file to define global variables and
react to global events

Ends with .cs These are code-behind files that contain C# code.
They allow you to separate the application logic from
the user interface of a web page.

ASP.NET WEB FOLDERS

App_Browsers

App_Code
App_GlobalResources
App_LocalResources
App_WebReferences
App_Data

App_Themes

Bin

Contains .browser files that ASP.NET uses to identify the
browsers that are using your application and determine
their capabilities.

Contains source code files that are dynamically compiled
for use in your application

Stores global resources that are accessible to every page in
the web application.

Serves the same purpose as App_GlobalResources, except
these resources are accessible to a specific page only

Stores references to web services, which are remote code
routines that a webapplication can call over a network or
the Internet.

Stores data, including SQL Server Express database files

Stores the themes that are used to standardize and reuse
formatting in your web application.

Contains all the compiled .NET components (DLLs) that
the ASP.NET web applicationuses.

CONTROLS

HTML Server controls

Web Server Controls or ASP.NET controls

Web Server Controls are group of controls

derived directly from the
System.Web.UI.WebControls base class.

They are executed on the server side and output
HTML sent back to the client browser.

These controls are programmable and reusable.

Web Server Controls can detect the target
browser's capabilities and render themselves
accordingly.

Table 4-1. Basic HTML Elements

Tag

Name

Type

Description

zbs, <i=, <u=

<p>

<hlz, <h2>,
<h3>, <hd>,

<h5>, <hf>

<hr>

<d

Bold, Italic,
Underline

Paragraph

Heading

Image
Line Break
Horizontal

Line

Anchor

Container

Container

Container

Stand-alone

Stand-alone

Stand-alone

Container

These elements are used to apply basic formatting and make
text bold, italic, or underlined. Some web designers prefer to
use <strong= instead of, and <emphasis> instead of <i>.
Although these elements have the same standard rendering
(bold and italic, respectively), they make more sense if you
plan to use styles to change the formatting sometime in the
future.

The paragraph groups a block of free-flowing text together.
The browser automatically adds a bit of space between
paragraphs and other elements (such as headings) or
between subsequent paragraphs.

These elements are headings, which give text bold
formatting and a large font size. The lower the number,
the larger the text, so<hl=>1is for the largest heading.

The <h5>heading is normal text size, and <h6> is actually a
bit smaller than ordinary text.

The image element shows an external image file (specified
by the src attribute) in a web page.

This element adds a single line break, with no extra space.

This element adds a horizontal line (which gets the full
width of the containing element). You can use the horizontal
line to separate different content regions.

The anchor element wraps a piece of text and turns it into a
link. You set the link target by using the href attribute.

<ul=, <li=

<ol=,

<table, <tr>,
<td=, <th:

=div=

Unordered
List, List Item

Ordered List,
List Item

Table

Division

Container

Container

Container

Container

These elements allow you to build bulleted lists.

The element defines the list, while the <li=element
defines an item in the list (you nest the actual content for
that item inside).

These elements allow you to build numbered lists.

The element defines the list, while the element
defines an item in the list (you nest the actual content for
that item inside).

The <table= element allows you to create a multicolumn,
multirow table. Each row is represented by a <tr>element
inside the <table=. Each cell in a row is represented by

a <td= element inside a <tr=. You place the actual content
for the cell in the individual <td= elements (or, in the case
of the header cells that sit at the top of the table, you can
use <th> elements instead).

This element is an all-purpose container for other elements.
It’s used to separate different regions on the page, so you can
format them or position them separately. For example, you can
use <div>to create a shaded box around a group of elements.

<span:

<form:>

Span

Form

Container

Container

This element is an all-purpose container for bits of text
content inside other elements (such as headings or
paragraphs). It’s most commonly used to format those bits of
text. For example, you can use <span= to change the color of
a few words in a sentence.

This element is used to hold all the controls on a web page.
Controls are HTML elements that can send information back
to the web server when the page is submitted. For example,
text boxes submit their text, list boxes submit the currently
selected item in the list, and so on.

HTML Controls
HTML control runs at client side.

You can run HTML controls at server
side by adding attribute runat="server”.

HTML controls are client side controls,
so it does not provide STATE
management.

HTML control does not require
rendering.

As HTML controls runs on client side,
execution 1s fast.

HTML controls do not have any
separate class for its controls.

HTML controls does not support Object
Oriented paradigm.

HTML controls can not be accessed form
code behind files.

HTML control have limited set of
properties and/or methods.

ASP.Net Controls
ASP.Net controls run at server side.

You can not run ASP.Net Controls on
client side as these controls have this
attribute runat="server” by default.

ASP.Net Controls are Server side
controls, provides STATE management.

ASP.Net controls require rendering.

As ASP.Net controls run on server side,
execution 1s slow.

ASP.Net controls have separate class for
1ts each control.

With ASP.Net controls, you have full
support of Object oriented paradigm.

ASP.Net controls can be directly woxked
and accessed from code behind files.

ASP.Net controls have rich set of
properties and/or methods.

SERVER CONTROLS

are created and configured as objects.

They run on the web server and automatically provide
their own HTML output

key features :

They generate their own interface
They retain their state

They fire server-side events

Web Request
) L ™
s Is the file ragistared
o ASPNET? | Handla the request interrally,
/Fl:l or pass it to anothar service.
YES
M A
¢ ™
Has the application
L HET
AEF X instance been
created? Instantiate the application,
¥ create global varizbles, and
Lt fire global events.
YES -+ |
Has the requestad
page baen
compiled?
Compile and cache the page.
]
YES +{
Instantizte the page, fire
page evants, and run the
event handling coda.
Render the page to HTML,
ong coitrod at a time.
L iy
¥
Weeh Aesponse

Figure 5-4. The stages in an ASPNET reguest

How browsers understand ASP.Net pages?

~ If the client requests an HTML file:

e sy

esponse

Server

How browsers understand ASP.Net pages?

* If the client requests an ASP.Net page:

R uest

L ===
Ve

IS Server

HTML CONTROL CLASSES

[System .Object }
stern.web, ULControl jy

System.Web.ULHtmiIControls

HtrlControl ¥ l

HtmlInputControl % HtmiContainerControl [HtmlImage b

-{HtmiButton by
‘I, HtmlinputFile J 4 HtmlIForm J

1

{HtmiinputHidden Jy H HtmiGenericControl

—|Elltﬂt!mqe I HtmiSelect V
: putRadioButton ~{HtmlTabE }

'

- HtmITableRow % Concrete class
- HtmiTextArea y Abstract class |y

HTML CONTROL-EVENTS

HTML server controls also provide one of two
possible events: ServerClick or ServerChange.

The ServerClick event 1s simply a click that’s
processed on the server side.

The ServerChange event responds when a change
has been made to a text or selection control

Table 5-5. HTML Control Events

Event Controls That Provide It
ServerClick HtmlAnchor, HmlButton, HimlInputButton, HtmlInputlmage, HimlInputReset
ServerChange HitmlInputText, HimlInputCheckBox, HtmlInputRadioButton, HtmlInputHidden,

HitmlSelect, HimlTextArea

THE HTMLCONTROL BASE CLASS

Table 5-6. HimlConirol Properties

Property

Description

Attributes

Conirols

Disabled

EnableViewState

Page

Parent

Style
TagName

Visible

Provides a collection of all the attributes that are set in the control tag, and their values.
Rather than reading or setting an attribute through the Attributes, it's better to use the
corresponding property in the control class. However, the Attributes collection is useful
if you need to add or configure a custom attribute or an attribute that doesn't have a
corresponding property.

Provides a collection of all the controls contained inside the current control. {For
example, a <div= server control could contain an <input= server control.) Each object
is provided as a generic System.Web.ULControl object so that vou may need to cast the
reference to access control-specific properties.

Disables the control when set to true, thereby ensuring that the user cannot interact
with it, and its events will not be fired.

Disables the automatic state management for this control when set to false. In this case,
the control will be reset to the properties and formatting specified in the control tag
every time the page is posted back. If this is set to true (the default), the control stores its
state in a hidden input field on the page, thereby ensuring that any changes you make
in code are remembered. (For more information, see the “View State” section earlier in
this chapter.)

Provides a reference to the web page that contains this control as a System.Web. UL Page
object.

Provides a reference to the control that contains this control. If the control is placed directly
on the page (rather than inside another control), it will return a reference to the page object.

Provides a collection of CSS style properties that can be used to format the control.
Indicates the name of the underlying HTML element (for example, img or div).

Hides the control when set to false and will not be rendered to the final HTML page that
is sent to the client.

THE HTMLINPUTCONTROL CILASS

The HtmlInputControl class inherits from HtmlControl
and adds some properties that are used for the <input>
element.

The <input> element can represent different controls,
depending on the type attribute.

The <input type = “text”> element 1s a text box, and
<input type = “submit”> 1s a button.

Table 5-8. HimllnputConfrol Properties

Property Description

Type Provides the type of input control. For example, a control based on <input type ="file"> would
return file for the type property.

Value Returns the contents of the control as a string. In the simple currency converter, this property
allowed the code to retrieve the information entered in the text input control.

THE HTMLCONTAINERCONTROL CLASS

Table 5-7. HtmlContainerControl Properties
Property Description

InnerHtml The HTML content between the opening and closing tags of the control. Special
characters that are set through this property will not be converted to the equivalent
HTML entities. This means you can use this property to apply formatting with nested
tags such as, <i>, and<hl>.

InnerText The text content between the opening and closing tags of the control. Special characters
will be automatically converted to HTML entities and displayed as text (for example,
the less-than character (<) will be converted to &1t ; and will be displayed as <in the
web page). This means you can't use HTML tags to apply additional formatting with
this property. The simple currency converter page uses the InnerText property to enter
results into a <p> element.

PAGE CLASS

Property

Description

IsPostBack

EnableViewState

Application

Session

Cache

This Boolean property indicates whether this is the first ime the page is being
run (false) or whether the page is being resubmitted in response to a control
event, typically with stored view state information (true). You'll usually check
this property in the Page.Load event handler to ensure that your initial web page
initialization is performed only once.

When set to false, this overrides the EnableView5tate property of the contained
controls, thereby ensuring that no controls will maintain state information.

This collection holds information that's shared between all users in your website.
For example, you can use the Application collection to count the number of times
a page has been visited. You'll learn more in Chapter 8.

This collection holds information for a single user, so it can be used in different

pages. For example, you can use the Session collection to store the items in the

current user's shopping basket on an e-commerce website. You'll leam more in
Chapter 8.

This collection allows you to store objects that are time-consuming to create

so they can be reused in other pages or for other clients. This technique, when
implemented properly, can improve performance of your web pages. Chapter 23
discusses caching in detail.

Request

Response

Server

User

This refers to an HttpRequest object that contains information about the current
web request. You can use the HttpRequest object to get information about the
user's browser, although you'll probably prefer to leave these details to ASP.

NET. You'll use the HttpRequest object to transmit information from one page to
another with the query string in Chapter 8.

This refers to an HttpHesponse object that represents the response ASP.NET will
send to the user’s browser. You'll use the HtpResponse object to create coolkdes in
Chapter 8, and you'll see how it allows you to redirect the user to a different web
page later in this chapter.

This refers to an HitpServerUtility object that allows you to perform a few
miscellaneous tasks. For example, it allows you to encode text so that it's safe to
place it in a URL or in the HTML markup of your page. You'll learn more about
these features in this chapter.

If the user has been authenticated, this property will be initialized with user
information. Chapter 19 describes this property in more detail.

SENDING THE USER TO A NEW PAGE

Click here to go
to newpage.aspx.
Response.Redirect("newpage.aspx");
Response.Redirect("http://www.prosetech.com");

Server.Transfer("newpage.aspx");

APPLICATION EVENTS

Table 5-11. Basic Application Evenis

Event-Handling Method

Description

Application_Start(}

Application_End()

Application_BeginRequest()

Application_EndRequesti)

Session_Start()

Session_End()

Application_FError()

Occurs when the application starts, which is the first ime it receives a
request from any user. It doesn’t occur on subsequent requests. This
event is commonly used to create or cache some initial information that
will be reused later.

Ocecurs when the application is shutting down, generally because the
web server is being restarted. You can insert cleanup code here.

Occurs with each request the application receives, just before the page
code 1s executed.

Occurs with each request the application receives, just after the page
code 1s executed.

Ocecurs whenever a new user request is received and a session is started.
Sessions are discussed in detail in Chapter 8.

Occurs when a session times out or 1s programmatically ended. This
event is raised only if you are using in-process session-state storage
(the InProc mode, not the StateServer or 5()LServer modes).

Occurs in response to an unhandled error. You can find more
information about error handling in Chapter 7.

CONFIGURING AN ASP.NET APPLICATION

<?xml version ="1.0" 7>

<configuration>

<appSettings > .. .</appSettings>
<connectionStrings > . . .</connectionStrings>
<gystem.web > .. .</system.web>
</configuration>

WEB CONTROLS

Table 6-1. Basic Web Conitrols

Control Class Underlying HTML Element

Label <span:

Button <input type="submit" > or <input type="button" >

TextBox <input type="text" >, <input type="password" >, or <textarea>
CheckBox <input type="checkbox" >

RadioButton <input type="radio" »

Hyperlink <a»

LinkButton <a>with a contained tag

ImageButton <input type="image" >

Image <img=

ListBox <select size="X" > where X is the number of rows that are visible at once
DropDownList <select

CheckBoxList A list or <table> with multiple <input type="checkbox" > tags
RadioButtonList A list or <table> with multiple <input type="radio" > tags
BulletedList An ordered list (numbered) or unordered list (bulleted)
Panel <div>

Table, TableRow, and TableCell

<table=, <tr>, and <td> or <th>

THE WEB CONTROL TAGS

ASP.NET tags always begin with the prefix asp: followed
by the class name.

If there 1s no closing tag, the tag must end with />.
<asp:TextBox ID="txt" runat="server" />

WEB CONTROL CLASSES

Web control classes are defined in the
System.Web.UIL.WebControls namespace

System.Web.Ul.WebGontrols

| Srstem.ﬂhjﬁ:lt

| System.Web. Ul Control |

Figure 6-2. The web control hierarchy

[WebControl | BaseDataBoundControl +——————
[
[Literal H {DataBoundContral |
Placehalder
CompositeDataBoundControl |
gtk | Fietioad [Detistien
Himage | [Formiiew [HierarchicalDataBoundControl |
ImageEutton [ValidationSummary | [GridView [Menu |
{ImageMap |
BaseValidator L TlistControl |
[BaseCompareVaiidaior | [CheckBorist _ H
Comparevaidaior | [Droplownlist
i [-
TableCel (Cnbwvaian | [RadioButionList
m— [BullstedList .
TableHeaderCell | | RegularExpressionValidator |
TableRow RequiredFieldValidator |

Table 6-2. WebControl Properties

Property

Description

AccessKey

BackColor, ForeColor,
and BorderColor

BorderWidth
BorderStyle

Controls

Enabled

EnableViewState

Specifies the keyboard shortcut as one letter. For example, if you set this to Y, the
Alt+Y keyboard combination will automatically change focus to this web control

(assuming the browser supports this feature).

Sets the colors used for the background, foreground, and border of the control.
In most controls, the foreground color sets the text color.

Specifies the size of the control border.

One of the values from the BorderStyle enumeration, including Dashed, Dotted,
Double, Groove, Ridge, Inset, Outset, Solid, and None.

Provides a collection of all the controls contained inside the current control. Each
object is provided as a generic System.Web. UL Control object, so you will need to
cast the reference to access control-specific properties.

When set to false, the control will be visible, but it will not be able to receive user
input or focus.

Set this to false to disable the automatic state management for this control. In
this case, the control will be reset to the properties and formatting specified

in the control tag (in the .aspx page) every time the page is posted back. If

this is set to true (the default), the control uses the hidden input field to store
information about its properties, ensuring that any changes you make in code are

remembered.

Font

Height and Width

ID

Page

Parent

TabIndex

ToolTip

Visible

Specifies the font used to render any text in the control as a System.Web.
UL WebControls. FontInfo object.

Specifies the width and height of the control. For some controls, these properties
will be ignored when used with older browsers.

Specifies the name that you use to interact with the control in your code (and
also serves as the basis for the ID that's used to name the top-level element in the
rendered HTML).

Provides a reference to the web page that contains this control as a System. Web.
Ul Page object.

Provides a reference to the control that contains this control. If the control is
placed directly on the page (rather than inside another control), it will return a
reference to the page object.

A number that allows you to control the tab order. The control with a TabIndex
of 0 has the focus when the page first loads. Pressing Tab moves the user to the
control with the next lowest TabIndex, provided it is enabled. This property is
supported only in Internet Explorer.

Displays a text message when the user hovers the mouse above the control. Many
older browsers don't support this property.

When set to false, the control will be hidden and will not be rendered to the final
HTML page that is sent to the client.

UNITS

All the properties that wuse measurements, 1ncluding
BorderWidth, Height, and Width, require the Unit structure,
which combines a numeric value with a type of measurement
(pixels, percentage, and so on).

This means when you set these properties in a control tag, you
must make sure to append px (pixel) or % (for percentage) to
the number to indicate the type of unit.

<asp:Panel Height="300px" Width="50%" ID="pnl"

—n

runat="server" />

// Convert the number 300 to a Unit object
// representing pixels, and assign it.
pnl.Height = Unit.Pixel(300);

// Convert the number 50 to a Unit object

// representing percent, and assign it.
pnl.Width = Unit.Percentage(50);

ENUMERATIONS
ctrl.BorderStyle = BorderStyle.Dashed;

<asp:Label BorderStyle="Dashed" Text="Border
Test" ID="1bl" runat="server" />

COLORS

The Color property refers to a Color object from the
System.Drawing namespace.

You can create color objects in several ways:
Using an ARGB (alpha, red, green, blue) color value:

You specify each value as an integer from 0 to 255.

The alpha component represents the transparency of a color,
and usually you’ll use 255 to make the color completely opaque.

Using a predefined .NET color name:

You choose the correspondingly named readonly property from
the Color structure.

These properties include the 140 HTML color names.
Using an HT'ML color name:

You specify this value as a string by using the ColorTranslator
class.

using System.Drawing;

The following code shows several ways to specify a color in
code:

// Create a color from an ARGB value

int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);
// Create a color using a .NET name

ctrl.ForeColor = Color.Crimson;

// Create a color from an HTML code

ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

<asp:TextBox ForeColor="Red" Text="Test" ID="txt"

—n

runat="server" />
<asp:TextBox ForeColor="#{f50ff" Text="Test"
ID="txt" runat="server" />

FONTS

The Font property actually references a full FontInfo object,
which 1s defined in the System.Web.UI.WebControls
namespace.

Every FontInfo object has several properties that define its
name, size, and style.

Table 6-3. Fontinfo Properties

Property Description
Name A string indicating the font name (such as Verdana).
Names An array of strings with font names, in the order of

preference. The browser will use the first matching font that's
installed on the user's computer.

Size The size of the font as a FontUnit object. This can represent
an absolute or relative size.

Bold, Italic, Strikeout, Underline, and Overline Boolean properties that apply the given style attribute.

ctrl. Font.Name = "Verdana";
ctrl.Font.Bold = true;

/[Specifies a relative size.
ctrl.Font.Si1ze = FontUnit.Small;

// Specifies an absolute size of 14 pixels.
ctrl.Font.Size = FontUnit.Point(14);

<asp:TextBox Font-Name="Tahoma" Font-Size="40"
Text="Si1ze Test" ID="txt*“ runat="server" />

Or you could set a relative size like this:

!

<asp:TextBox Font-Name="Tahoma" Font-Size="Large'
Text="Si1ze Test” ID="txt" runat="server" />

<asp:TextBox Font-Names="Verdana,Tahoma,Arial"
Text="S1ze Test" ID="txt" runat="server" />

Focus

—

<form DefaultFocus="TextBox2" runat="server">

CONTROL PREFIXES

Button: cmd (or btn)
* CheckBox: chk

- Image: 1img

- Label: 1bl

 List control: Ist

* Panel: pnl

- RadioButton: opt
* TextBox: txt

LI1ST CONTROLS

The list controls include
ListBox
DropDownlList
CheckBoxList
RadioButtonList
BulletedList

SelectedIndex

SelectedItem

Text (the displayed content)

Value (the hidden value from the HTMLmarkup)
Selected

SelectionMode

Items collection

Tableb-4. Added Rulletedl it Properfies

Property Description

Hullet5byle Determines the type of hst. Choose from Numbered (1, 2 3, . .) LowerAlpha (a, b, c, . .}
and Upperdlpha (A, B, G, .. . LowerBoman (3, 14, 114, ; . . .} and UpperBoman (1, IL I, . . .
and the bullet symbols Disc, Cirde, Square, or CustomImage {im which case you must set
the Bulletimagelir] property]l

HualletImagelrd [f the Bulletityle is set to Custom mage, this poimis to the mage that is placed to the left
of =xch item as a ballet.

FirstBulletNumber [n an ardered lisz {using the Numbered, LowerAlpha, UpperAlpha, LowerBoman, and
UpperBoman styles), thos sets the first value For example, if you set BrstBulletSumber to
3, the list might read 3, 4, 5 (for Numbered) ar C, I3, E {for UpperAlphal.

IhsplayMode Determines whether the ext of =ach item = rendersd as text (use Text, the defauls] ar

a lyperlink {use LinkButton or HyperLink). The difference befwesn LinkBution and
HyperLink is bow they treat chicks. When you use LinkBution, the BulletedList Gres a
Click event that you can react to on the server to perform the navigation. When you use
HyperLink, the BulletedList doesn't fire the Chck event—instesd, it treats the text of each
list item 25 2 relagive or absalwte THL, and renders them as ordinary HTML byperlmis
When the user dlicks an rem, the browser attempis o nevigaie to that THRL.

TABLE CONTROLS

A Sample Teble object
(2 Rows, 3 Columns)
TableRow
TableCell TableCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls
TableRow
TableCell TableCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls

Figure 6-7. Table control containment

€& Table Test - Windows Internet Explorer T
dEIEIE

@ @ - |E, http://localhost:53860,/TableTest.aspx

<7 Fawvorites | & Table Test | | i ~ B ~ = dm ~ >
Fows: 4 Cols: 3

Put Border Around Cells

Create |

Example Cell (0.0} Example Cell (0_1) Example Cell (0,2
() () ()

Example Cell (1.0) Example Cell (1.1) Example Cell (1.2)
(=) (=) (=)

Example Cell (2.0) Example Cell (2_1) Example Cell (2.2)
() () ()

Example Cell (3.0) Example Cell (3.1 Example Cell (3.2)
() () ()

&P Internet | Protected Mode: On

Vﬁﬂ

-

&, 100%

Page Request

Unload

ASP.NET Page
Life Cycle

Stages
Rendering Initialization

Postback
Event Handling

Page Request
Page Start
Request and Response
Page Initialization
Control Initilization
Master Page and themes
Page Load
Validation

Postback event handling
Control Event handlers

Page Rendering
ViewState
Respose object is ready

Page Unload

Unwanted objects are removed

ASP .Net Page Life Cycle: Stages

Page Request: The page request occurs before the page life cycle begins. When the page & requested by
a user, ASP NET determines whether the page needs to be parsed and compiled or whether a cached
version of the page can be sent in response without running the page.

Start: In the start stage, page properties such as Request and Response are set At this stage, the page
also determines whether the request is a postback or a new request and sets the IsPostBack property.

Initialization: During page initialization, controls on the page are available and each controfl's UniquelD
property s set. A master page and themes are ako applied to the page if applicable. If the current request
is a postback, the postback data has not yet been loaded and control property values have not been
restored to the values from view state.

Load: During load, if the current request is a postback, control properties are loaded with information
recovered from view state and control state.

Postback Event Handling: If the request is a postback, control event handlers are called. After that, the
Validate method of all validator controls is called, which sets the IsValid property of individual validator
controls and of the page

Rendering: Before rendering, view state is saved for the page and all controk. During the rendering
stage, the page calls the Render method for each control, providing a text writer that writes &s output to
the OutputStream object of the page's Response property.

Unload: The Unload event is raised after the page has been fully rendered, sent to the client, and is ready
to be discarded. At this point, page properties such as Response and Request are unloaded and cleanup &
performed.

ASP .Net Page Life Cycle: Events

Prelnit
Init
PreLoad
Load
PreRender
Render
Unload

ASP .Net Page Life Cycle: Events

Pulnk: Raised after the start stage is complete and before the initidization begins. Chcdt the IsPostBack
to determine whether this is the time the page is being processed. Set a master page dynamically. Set

me property dyramically.

o Init: Rawsed after all controls have been initialized and any skin settings have been applied. The Init event of
individual controls occurs before the Init event of the page. Use this event to read or initialize control properties.

" Preload: Raised after the page loads view state for itself and all controls, and after it processes postback data that
is Included with the Request instance.

* Load: The Page ectczllstheOandmhodondehY ?ect.andthcn recursively does the same for each
child control until the page and all controk are loaded. The Load event of individual controls occurs after the Load
event of the page. Use the OnlLoad event method to set properties in controls and to establish database
connections.

* Control events: Use these events to handle specific control events, such as a Button control’s Click event or a
TextBox control’s TextChanged event.

* PreRender: Raised after the Page object has created all controls that are required in order to render the page,
including child controls of composite controls. The W raises the PreRender event on the Page object, and
then recursively does the same for each child contro reRender event of individual controls occurs after the
PreRender event of the page.

* Render: This (s not an event; instead, at this stage tg essing, the Page object calls this method on each control
All ASP.NET Web server controls have a Render method that writes out the controf's markup o send to the
browser. ¥ you create a custom control, you typically override this method to output the control's markup.
However, f your custom control incorporates only standard ASP.NET Web server controls and no custom

markup, you do not need to override the Render method.
* Unload: Raised for each control and then for the page.

Autopostback is Boolean value that specifies whether
the control 1s automatically posted back to the server
when the contents change or not. Default is false.

ASP.NET also adds two hidden input fields that are used
to pass information back to the server.

This information consists of the ID of the control that
raised the event and any additional information that
might be relevant.

These fields are initially empty, as shown here:

<input type="hidden" name="_ EVENTTARGET"
ID="__ EVENTTARGET" value="" />

<input type="hidden" name="_ EVENTARGUMENT"
ID="__EVENTARGUMENT" value="" />

The _ doPostBack() function has the responsibility of
setting these values with the appropriate information about
the event and then submitting the form.

The _ doPostBack() function is shown here:

<script language="text/javascript">

function _ doPostBack(eventTarget, eventArgument) {

1f (ItheForm.onsubmit | | (theForm.onsubmit() != false)) {
theForm._ EVENTTARGET.value = eventTarget;
theForm._ EVENTARGUMENT.value = eventArgument;
theForm.submit();

;

b

</script>

Web Client

Web Page Request

<

HTML Output Returned

>

ASP.NET creates page
object from.aspx code

v

ASP.NET runs the
Page.Load event handler

v

PHQE Postback

Final page s rendered

HTML Output Returned

>

ASP.NET creates page
object from .aspx code

¥

ASP.NET runs the
Page.Load event handler

L4

ASP.NET runs any other
triggered event handlers

v

<

Final page is rendered

Figure 6-11. The page-processing sequence

)
>

[5o e

& = C | ¢ htp:/locahost: 1110/CheckBoxlistAutoPostBack, aspi

CheckBoxList: AutoPostBack

asp.net controls
[Image
[TreeView
[Literal
[V ahdationSummary
L] Ml View

r '] How touse AutoPostBackf...

<« C || 5% htip:/ilocahost: 1110/CheckBoxListAutoPostBack. asp

CheckBoxList: AutoPostBack

You Selected:
TreeView

asp.net controls

[Image

M TreeView

[1Literal

LW alidationSummary
CIhfultiView

T~
&Y,

[Cromess e G

e C | | % hitto:/locahost: 1110/CheckBoxListAutoPostBack. aspi

CheckBoxList: AutoPostBack

You Selected:
TreeView
ValidationSummary

asp.net controls
[Tmage
¥ TreeView
[Literal
M ValidationSummary
L MultView

RICH CONTROLS

The Calendar

The Calendar control presents a miniature calendar
that you can place in any web page.

<asp:Calendar id="MyCalendar" runat="server" />

s
Untitled Page \
< C | ® localhost:10166/CalendarTest.aspx w oA
= March 2013 =
Sun Mon Tue Wed Thu Fri Sat
= 24 15 26 27 28 1 1
= 3 4 53 6 1 &8 38
= 10 11 12 13 14 153 16
= 17 18 19 20 21 22 123
= 24 15 26 27 28 29 30
= 3 1 2 3 4 3 6

IblDates.Text = "You selected these dates:
";

foreach (DateTime dt in
MyCalendar.SelectedDates)

{
IblDates.Text += dt.ToLongDateString() + "
";

;

FIGURE 10-2. SELECTING MULTIPLE DATES

" | ol
. Untitled Page H"-k
C | © localhost:10166/CalendarTest.aspx W N
= March 2013 =
Sun Mon Tue Wed Thu Fri Sat
= 24 25 26 27 18 1 12
= 3 4 3 6 1 & 9
=
= 17 18 19 20 11 21 13
= 24 15 16 27 18 29 30
= 31 1 2 3 4 3 6

You selected these dates:
Sundav, March 10, 2013
Monday, March 11, 2013
Tuesday, March 12, 2013
Wednesdav, March 13, 2013
Thursday, March 14, 2013
Friday, March 15, 2013
Saturday, March 16, 2013

FORMATTING THE CALENDAR

Table 10-1. Properties for Calendar Styles

Member

Description

DayHeaderStyle

DayStyle
NextPrevStyle

OtherMonthDayStyle
SelectedDayStyle
SelectorStyle

TitleStyle
TodayDayStyle

WeekendDayStyle

The style for the section of the Calendar that displays the days of the week (as column
headers).

The default style for the dates in the current month.

The style for the navigation controls in the title section that move from month to
month.

The style for the dates that aren’t in the currently displayed month. These dates are
used to “fill in” the calendar grid. For example, the first few cells in the topmost row
may display the last few days from the previous month.

The style for the selected dates on the calendar.
The style for the week and month date selection controls.
The style for the title section.

The style for the date designated as today (represented by the TodaysDate property of
the Calendar control).

The style for dates that fall on the weekend.

P
AutoFormat

Select a scheme: Preview:

Remove Formattng

Smple

June 2012 >

Professonal 1

Professional 2 Su Mo Tu We Th Fr Sa

Classic > : p.

Coloeful 2 > 3 4 < [8 S
> 10111112113 114 15| 16
o 17 | 181191201 21| 22 | 23
> 24 |1 25 26| 27 28 29 30
>

Apply

RESTRICTING DATES

protected void MyCalendar_DayRender(Object source,
DayRenderEventArgs e)

d

// Restrict dates after the year 2013 and those on the
weekend.

if (e.Day.IsWeekend | | e.Day.Date.Year > 2013)

{
e.Day.IsSelectable = false;

;

Table 10-2. CalendarDay Properties

Property Description

Date The DateTime object that represents this date.

IsWeekend True if this date falls on a Saturday or Sunday.

IsToday True if this value matches the CalendarTodaysDate property, which is set to the
current day by default.

IsOtherMonth True if this date doesn’t belong to the current month but is displayed to fill in the first

or last row. For example, this might be the last day of the previous month or the next
day of the following month.

IsSelectable Allows you to configure whether the user can select this day.

protected void MyCalendar_DayRender(Object source,
DayRenderEventArgs e)

{
// Check for May 5 in any year, and format it.

1f (e.Day.Date.Day == 5 && e.Day.Date.Month == 5)
{

e.Cell.BackColor = System.Drawing.Color.Yellow;

// Add some static text to the cell.

Label 1bl = new Label();

Ibl.Text = “
My Birthday!”;
e.Cell.Controls.Add(Ibl);

h
h

FIGURE 10-4. HIGHLIGHTING A DAY

Untitled Page

= C' @ localhost:10166/CalendarTest.asps

April May

Su Mo Tu We Th Fr
> 1 2 3 4
>] d 3 9 10 11
= 13 14 13 16 17 18
= '.'E '.']_ 17 "3 14 15
= 2 28 20 30 3l

|

protected void MyCalendar_SelectionChanged(Object source, EventArgs e)
{

IstTimes.Items.Cleaxr();

switch (MyCalendar.SelectedDate.DayOfWeek)
{

case DayOfWeek.Monday:

/I Apply special Monday schedule.
IstTimes.Items.Add(“10:00”);
IstTimes.Items.Add(“10:30”);
IstTimes.Items.Add(“11:00”);
break;

default:
IstTimes.Items.Add(“10:00”);
IstTimes.Items.Add(“10:30”);
IstTimes.Items.Add(“11:007);
IstTimes.Items.Add(“11:30”);
IstTimes.Items.Add(“12:007);
IstTimes.Items.Add(“12:307);
break;

b
b

Table 10-3. Calendar Members

Member

Description

Caption and
CaptionAlign

CellPadding

CellSpacing

DayNameFormat

FirstDayOfWeek

NextMonthText and
PrevMonthText

Gives you an easy way to add a title to the calendar. By default, the caption appears at
the top of the title area, just above the month heading. However, you can control this to
some extent with the CaptionAlign property. Use Left or Right to keep the caption at the
top but move it to one side or the other, and use Bottom to place the caption under the
calendar.

ASP.NET creates a date in a separate cell of an invisible table. CellPadding is the space, in
pixels, between the border of each cell and its contents.

The space, in pixels, between cells in the same table.

Determines how days are displayed in the calendar header. Valid values are Full (as in
Sunday), FirstLetter (S), FirstTwoLetters (Su), and Short (Sun), which is the default.

Determines which day is displayed in the first column of the calendar. The values are any
day name from the FirstDayOfWeek enumeration (such as Sunday). By default, this is
Sunday.

Sets the text that the user clicks to move to the next or previous month. These navigation
links appear at the top of the calendar and are the greater-than (>) and less-than (<)
signs by default. This setting is applied only if NextPrevFormat is set to CustomText.

NextPrevFormat

SelectedDate and
SelectedDates

SelectionMode

Sets the text that the user clicks to move to the next or previous month. This can be
FullMonth (for example, December), ShortMonth (Dec), or CustomText, in which case
the NextMonthText and PrevMonthText properties are used. CustomText is the default.

Sets or gets the currently selected date as a DateTime object. You can specify this in

the control tag in a format like this: 12:00:00 AM, 12/31/2010 (depending on your
computer’s regional settings). If you allow multiple date selection, the SelectedDates
property will return a collection of DateTime objects, one for each selected date. You can
use collection methods such as Add, Remove, and Clear to change the selection.

Determines how many dates can be selected at once. The default is Day, which allows
one date to be selected. Other options include DayWeek (a single date or an entire week)
or DayWeekMonth (a single date, entire week, or entire month). You have no way to
allow the user to select multiple noncontiguous dates. You also have no way to allow
larger selections without also including smaller selections. (For example, if you allow full
months to be selected, you must also allow week selection and individual day selection.)

SelectMonthText and
SelectWeekText

The text shown for the link that allows the user to select an entire month or week. These
properties don't apply if the SelectionMode is Day.

Table 10-3. (continued)

Member Description

ShowDayHeader, These Boolean properties allow you to configure whether various parts of the calendar
ShowGridLines, are shown, including the day titles, gridlines between every day, the previous/next
ShowNextPrevMonth, month navigation links, and the title section. Note that hiding the title section also hides

and ShowTitle
TitleFormat

TodaysDate

VisibleDate

DayRender event

SelectionChanged
event

VisibleMonthChanged
event

the next and previous month navigation controls.

Configures how the month is displayed in the title area. Valid values include Month and
MonthYear (the default).

Sets which day should be recognized as the current date and formatted with the
TodayDayStyle. This defaults to the current day on the web server.

Gets or sets the date that specifies what month will be displayed in the calendar. This
allows you to change the calendar display without modifying the current date selection.

Occurs once for each day that is created and added to the currently visible month before
the page is rendered. This event gives you the opportunity to apply special formatting,
add content, or restrict selection for an individual date cell. Keep in mind that days can
appear in the calendar even when they don't fall in the current month, provided they fall
close to the end of the previous month or close to the start of the following month.

Occurs when the user selects a day, a week, or an entire month by clicking the date
selector controls.

Occurs when the user clicks the next or previous month navigation controls to move to
another month.

THE ADROTATOR

provides a graphic on a page that 1s chosen randomly
from a group of possible images.

Every time the page 1s requested, an 1mage 1s selected at
random and displayed, which i1s the rotation indicated by
the name AdRotator.

One use of the AdRotator i1s to show banner-style
advertisements on a page, but you can use 1t anytime
you want to vary an image randomly.

THE ADVERTISEMENT FILE

The AdRotator stores its list of image files 1n an
XML file. This file uses the format shown here:

<Advertisements>
<Ad>
<ImageUrl>prosetech.jpg</ImageUrl>
<NavigateUrl>http://www.prosetech.com</NavigateUrl>
<AlternateText>ProseTech Site</AlternateText>
<Impressions>1</Impressions>
<Keyword>Computer</Keyword>
</Ad>
</Advertisements>

AdRotator control picks at random from the list of
advertisements

Table 10-4. Advertisement File Elements —

Element Description

ImageUrl The image that will be displayed. This can be a relative link (a file in the current directory) or
a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner. This can be a relative or fully
qualified URL.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed. This text will

also be used as a tooltip in some newer browsers.

Impressions A number that sets how often an advertisement will appear. This number is relative to the
numbers specified for other ads. For example, a banner with the value 10 will be shown
twice as often (on average) as the banner with the value 5.

Keyword A keyword that identifies a group of advertisements. You can use this for filtering. For
example, you could create ten advertisements and give half of them the keyword Retail and
the other half the keyword Computer. The web page can then choose to filter the possible

advertizsements tn incliide only ane af these sronine

Table 10-5. Special Frame Targets

Target Description

_blank The link opens a new unframed window.

_parent The link opens in the parent of the current frame.
_self The link opens in the current frame.

_top The link opens in the topmost frame of the current window (so the link appears in the full window).

<asp:AdRotator ID="Ads" runat="server"
AdvertisementFile="MainAds.xm]"

Target="_blank” KeywordFilter="Computer” />

THE VALIDATION. CONTROLS

Table 9-1. Validator Controls

Control Class Description

RequiredFieldValidator Validation succeeds as long as the input control doesn't contain an empty
string.

RangeValidator Validation succeeds if the input control contains a value within a specific
numeric, alphabetic, or date range.

CompareValidator Validation succeeds if the input control contains a value that matches the
value in another input control, or a fixed value that you specify.

RegularExpressionValidator Validation succeeds if the value in an input control matches a specified regular
expression.

CustomValidator Validation is performed by a user-defined function.

Each validation control can be bound to a single
iput control.

In addition, you can apply more than one
validation control to the same input control to
provide multiple types of validation.

VALIDATION CONTROLS

RequiredFieldValidator
RangeValidator
CompareValidator

RegularExpressionValidator
CustomValidator

ValidationSummary

BASEVALIDATOR CLASS

Members
ControlToValidate
Display
EnableClientScript
Enabled
ErrorMessage
Text

IsValid

SetFocusOnError

ValidationGroup

Validate()

Description

Indicates the input control to validate.

Indicates how the error message is shown.
Indicates whether client side validation will take.
Enables or disables the validator.

Indicates error string.

Error text to be shown if validation fails.

Indicates whether the value of the control is valid.

It indicates whether in case of an invalid control, the
focus should switch to the related input control.

The logical group of multiple validators, where this
control belongs.

This method revalidates the control and updates the
IsValid property.

REQUIREDFIELDVALIDATOR CONTROL

o The RequiredFieldValidator control ensures that
the required field 1s not empty.

{asp:RequiredFieldValidator ID="rfvcandidate"
runat="server” ControlToValidate ="ddlcandidate”
ErrorMessage="Please choose a candidate”
InitialValue="Please choose a candidate”>

</asp:RequiredFieldvValidator>

RANGEVALIDATOR CONTROL

The RangeValidator control verifies that the input
value falls within a predetermined range.

Properties Description

Type It defines the type of the data. The available values
Currency, Date, Double, Integer, and String.

MinimumVyalue It specifies the minimum value of the range.

Maximumvalue It specifies the maximum value of the range.

The syntax of the control is as given:

<{asp:RangeValidator ID="rvclass" runat="server"” ControlToValidate="txtclass"
ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"
MinimumValue="6" Type="Integer">

</asp:RangeValidator:>

COMPAREVALIDATOR CONTROL

The CompareValidator control compares a value in one
control with a fixed value or a value in another control.

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare
with.

ValueToCompare It specifies the constant value tc compare with.

Operator It specifies the comparison operator, the available values

are: Equal, NotEqual, GreaterThan, GreaterThanEqual,
LessThan, LessThanEqual, and DataTypeCheck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidatorl” runat="server"
ErrorMessage="CompareValidator">

</asp:CompareValidators

REGULAREXPRESSIONVALIDATOR

The RegularExpressionValidator allows validating the
input text by matching against a pattern of a regular
expression.

The regular expression 1s set in the ValidationExpression
property.

Character Escapes Description
\b Matches a backspace.
\E Matches a tab.

\r Matches a carriage return.

W Matches a vertical tab.
\f Matches a form feed.
\n Matches a new line.

Escape character.

Metacharacters

[abcd]
[~abcd]
[2-7a-MA-M]
W

\W

\S

VS
\d

VD

Description

Matches any character except \n.

Matches any character in the set,

Excludes any character in the set.

Matches any character specified in the range.
Matches any alphanumeric character and underscore.
Matches any non-word character.

Matches whitespace characters like, space, tab, new line
etc.

Matches any non-whitespace character.
Matches any decimal character.

Matches any non-decimal character.

Quantifier Description

* Zero or more matches.

+ One or more matches.

7 Zero or one matches.

1IN} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

The syntax of the control is as given:

{asp:RegularExpressionValidator ID="string" runat="server"” ErrorMessage="string"
ValidationExpression="string" ValidationGroup="string":>

</asp:RegularExpressionValidator:> .

CUSTOMVALIDATOR

The CustomValidator control allows writing application
specific custom validation routines for both the client side
and the server side validation.

The client side validation routine should be written 1n a
scripting language, such as JavaScript or VBScript, which
the browser can understand.

The server side validation routine must be called from the
control's ServerValidate event handler.

The server side validation routine should be written 1n
any .Net language, like C# or VB.Net.

<asp:CustomValidator ID="CustomValidatorl™ runat="server”
ClientValidationFunction=.cvf func. ErrorMessage="CustomValidator™:

VALIDATIONSUMMARY

The ValidationSummary control does not perform any
validation but shows a summary of all errors 1n the page.

The summary displays the values of the ExrrorMessage
property of all validation controls that failed validation.

The following two mutually inclusive properties list out
the error message:

ShowSummary : shows the error messages in specified
format.

ShowMessageBox : shows the error messages in a
separate window.

<asp:ValidationSummary ID="ValidationSummaryl"” runat="server”
DisplayMode = "BulletList" ShowSummary = "true” HeaderText="Errors:" />

VALIDATION GROUPS

Complex pages have different groups of information
provided in different panels.

In such situation, a need might arise for performing
validation separately for separate group.

This kind of situation 1s handled using validation
groups.

To create a validation group, you should put the input
controls and the validation controls into the same
logical group by setting
their ValidationGroupproperty.

