

A TOUR TO VISUAL STUDIO

 Creating Websites

CREATING WEBSITES

CREATING AN EMPTY WEB APPLICATION

USING THE SOLUTION EXPLORER

ADDING WEB FORMS

ADDING WEB CONTROLS

THE VISUAL STUDIO ENVIRONMENT

USING THE PROPERTIES WINDOW

INLINE CODE

THE PAGE DIRECTIVE

 Defines page-specific attributes that guide the behavior of

the page compiler and the language parser that will

preprocess the page.

 CodeFile: The code behind file name

 Language: The programming language for the code to be

added

 AutoEventWireup: It states that the page is automatically

bound to the methods. Indicated by a Boolean value.

 Inherits : The name of the class to inherit from

<%@ Page Language = "C#" AutoEventWireup = "true"

CodeFile = "Default.aspx.cs" Inherits = "_Default" %>

CODE-BEHIND CLASS

 Type it in manually

 Double-click a control in design view

 Choose the event from the Properties window

ADDING EVENT HANDLERS

protected void Button1_Click(object sender, EventArgs e)

{

// Your code for reacting to the button click goes here.

}

<asp:Button ID = "Button1" runat = "server" Text = "Button" OnClick

= "Button1_Click" />

protected void Button1_Click(object sender, EventArgs e)

{

TextBox1.Text = “Here is some sample text.”;

}

ADDING EVENT HANDLERS

INTELLISENSE

CATCHING ERRORS IN CODE

AUTOMATICALLY IMPORTING NAMESPACES

ATTRIBUTES

 <p>

 Click < a href =

"http://www.prosetech.com">here to visit my

website.

 </p>

WEB FORM FUNDAMENTALS

 Anatomy of an ASP.NET Application

 Every ASP.NET application shares a common set of

resources and configuration settings.

 Web pages from other ASP.NET applications don’t share these

resources, even if they’re on the same web server.

 Every ASP.NET application is executed inside a separate

application domain.

 Application domains are isolated areas in memory, and they

ensure that even if one web application causes a fatal error, it’s

unlikely to affect any other application that is currently

running on the same computer.

 Application domains restrict a web page in one application from

accessing the in-memory information of another application.

 Each web application is maintained separately and has its own

set of cached, application, and session data.

ASP.NET FILE TYPES

File Name Description

Ends with .aspx These are ASP.NET web pages.

Ends with .ascx These are ASP.NET user controls

User controls allow you to develop a small piece of

user interface and reuse it in as many web forms as

you want without repetitive code

web.config This is the configuration file for your ASP.NET

application.

It includes settings for customizing security, state

management, memory management

global.asax This is the global application file.

You can use this file to define global variables and

react to global events

Ends with .cs These are code-behind files that contain C# code.

They allow you to separate the application logic from

the user interface of a web page.

ASP.NET WEB FOLDERS

Directory Description

App_Browsers Contains .browser files that ASP.NET uses to identify the

browsers that are using your application and determine

their capabilities.

App_Code Contains source code files that are dynamically compiled

for use in your application

App_GlobalResources Stores global resources that are accessible to every page in

the web application.

App_LocalResources Serves the same purpose as App_GlobalResources, except

these resources are accessible to a specific page only

App_WebReferences Stores references to web services, which are remote code

routines that a webapplication can call over a network or

the Internet.

App_Data Stores data, including SQL Server Express database files

App_Themes Stores the themes that are used to standardize and reuse

formatting in your web application.

Bin Contains all the compiled .NET components (DLLs) that

the ASP.NET web applicationuses.

CONTROLS

HTML Server controls

Web Server Controls or ASP.NET controls

 Web Server Controls are group of controls

derived directly from the

System.Web.UI.WebControls base class.

 They are executed on the server side and output

HTML sent back to the client browser.

 These controls are programmable and reusable.

 Web Server Controls can detect the target

browser's capabilities and render themselves

accordingly.

HTML Controls ASP.Net Controls

HTML control runs at client side. ASP.Net controls run at server side.

You can run HTML controls at server

side by adding attribute runat=”server”.

You can not run ASP.Net Controls on

client side as these controls have this

attribute runat=”server” by default.

HTML controls are client side controls,

so it does not provide STATE

management.

ASP.Net Controls are Server side

controls, provides STATE management.

HTML control does not require

rendering.

ASP.Net controls require rendering.

As HTML controls runs on client side,

execution is fast.

As ASP.Net controls run on server side,

execution is slow.

HTML controls do not have any

separate class for its controls.

ASP.Net controls have separate class for

its each control.

HTML controls does not support Object

Oriented paradigm.

With ASP.Net controls, you have full

support of Object oriented paradigm.

HTML controls can not be accessed form

code behind files.

ASP.Net controls can be directly worked

and accessed from code behind files.

HTML control have limited set of

properties and/or methods.

ASP.Net controls have rich set of

properties and/or methods.

SERVER CONTROLS

 are created and configured as objects.

 They run on the web server and automatically provide

their own HTML output

 key features :

 They generate their own interface

 They retain their state

 They fire server-side events

HTML CONTROL CLASSES

HTML CONTROL EVENTS

 HTML server controls also provide one of two

possible events: ServerClick or ServerChange.

 The ServerClick event is simply a click that’s

processed on the server side.

 The ServerChange event responds when a change

has been made to a text or selection control

THE HTMLCONTROL BASE CLASS

THE HTMLINPUTCONTROL CLASS

 The HtmlInputControl class inherits from HtmlControl

and adds some properties that are used for the <input>

element.

 The <input> element can represent different controls,

 depending on the type attribute.

 The <input type = “text”> element is a text box, and

<input type = “submit”> is a button.

THE HTMLCONTAINERCONTROL CLASS

PAGE CLASS

SENDING THE USER TO A NEW PAGE

 Click here to go

to newpage.aspx.

 Response.Redirect("newpage.aspx");

 Response.Redirect("http://www.prosetech.com");

 Server.Transfer("newpage.aspx");

APPLICATION EVENTS

CONFIGURING AN ASP.NET APPLICATION

 <?xml version = "1.0" ?>

 <configuration>

 <appSettings > . . .</appSettings>

 <connectionStrings > . . .</connectionStrings>

 <system.web > . . .</system.web>

 </configuration>

WEB CONTROLS

THE WEB CONTROL TAGS

 ASP.NET tags always begin with the prefix asp: followed

by the class name.

 If there is no closing tag, the tag must end with />.

 <asp:TextBox ID="txt" runat="server" />

WEB CONTROL CLASSES

 Web control classes are defined in the

System.Web.UI.WebControls namespace

UNITS

 All the properties that use measurements, including
BorderWidth, Height, and Width, require the Unit structure,
which combines a numeric value with a type of measurement
(pixels, percentage, and so on).

 This means when you set these properties in a control tag, you
must make sure to append px (pixel) or % (for percentage) to
the number to indicate the type of unit.

 <asp:Panel Height="300px" Width="50%" ID="pnl"
runat="server" />

 // Convert the number 300 to a Unit object

 // representing pixels, and assign it.

 pnl.Height = Unit.Pixel(300);

 // Convert the number 50 to a Unit object

 // representing percent, and assign it.

 pnl.Width = Unit.Percentage(50);

ENUMERATIONS

 ctrl.BorderStyle = BorderStyle.Dashed;

 <asp:Label BorderStyle="Dashed" Text="Border

Test" ID="lbl“ runat="server" />

COLORS

 The Color property refers to a Color object from the

System.Drawing namespace.

 You can create color objects in several ways:

 Using an ARGB (alpha, red, green, blue) color value:

 You specify each value as an integer from 0 to 255.

 The alpha component represents the transparency of a color,

and usually you’ll use 255 to make the color completely opaque.

 Using a predefined .NET color name:

 You choose the correspondingly named readonly property from

the Color structure.

 These properties include the 140 HTML color names.

 Using an HTML color name:

 You specify this value as a string by using the ColorTranslator

class.

 using System.Drawing;

 The following code shows several ways to specify a color in

code:

 // Create a color from an ARGB value

 int alpha = 255, red = 0, green = 255, blue = 0;

 ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);

 // Create a color using a .NET name

 ctrl.ForeColor = Color.Crimson;

 // Create a color from an HTML code

 ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

 <asp:TextBox ForeColor="Red" Text="Test" ID="txt"

runat="server" />

 <asp:TextBox ForeColor="#ff50ff" Text="Test"

 ID="txt" runat="server" />

FONTS

 The Font property actually references a full FontInfo object,

which is defined in the System.Web.UI.WebControls

namespace.

 Every FontInfo object has several properties that define its

name, size, and style.

 ctrl.Font.Name = "Verdana";

 ctrl.Font.Bold = true;

 // Specifies a relative size.

 ctrl.Font.Size = FontUnit.Small;

 // Specifies an absolute size of 14 pixels.

 ctrl.Font.Size = FontUnit.Point(14);

 <asp:TextBox Font-Name="Tahoma" Font-Size="40"

Text="Size Test" ID="txt“ runat="server" />

 Or you could set a relative size like this:

 <asp:TextBox Font-Name="Tahoma" Font-Size="Large"

Text="Size Test“ ID="txt" runat="server" />

 <asp:TextBox Font-Names="Verdana,Tahoma,Arial"

 Text="Size Test" ID="txt" runat="server" />

FOCUS

 <form DefaultFocus="TextBox2" runat="server">

CONTROL PREFIXES

 Button: cmd (or btn)

 • CheckBox: chk

 • Image: img

 • Label: lbl

 • List control: lst

 • Panel: pnl

 • RadioButton: opt

 • TextBox: txt

LIST CONTROLS

 The list controls include

 ListBox

 DropDownList

 CheckBoxList

 RadioButtonList

 BulletedList

 SelectedIndex

 SelectedItem

 Text (the displayed content)

 Value (the hidden value from the HTMLmarkup)

 Selected

 SelectionMode

 Items collection

TABLE CONTROLS

 Page Request

 Page Start

 Request and Response

 Page Initialization

 Control Initilization

 Master Page and themes

 Page Load

 Validation

 Postback event handling

 Control Event handlers

 Page Rendering

 ViewState

 Respose object is ready

 Page Unload

 Unwanted objects are removed

 PreInit

 Init

 PreLoad

 Load

 PreRender

 Render

 Unload

 Autopostback is Boolean value that specifies whether

the control is automatically posted back to the server

when the contents change or not. Default is false.

 ASP.NET also adds two hidden input fields that are used

to pass information back to the server.

 This information consists of the ID of the control that

raised the event and any additional information that

might be relevant.

 These fields are initially empty, as shown here:

 <input type="hidden" name="__EVENTTARGET"

ID="__EVENTTARGET" value="" />

 <input type="hidden" name="__EVENTARGUMENT"

ID="__EVENTARGUMENT" value="" />

 The __doPostBack() function has the responsibility of

setting these values with the appropriate information about

the event and then submitting the form.

 The __doPostBack() function is shown here:

 <script language="text/javascript">

 function __doPostBack(eventTarget, eventArgument) {

 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {

 theForm.__EVENTTARGET.value = eventTarget;

 theForm.__EVENTARGUMENT.value = eventArgument;

 theForm.submit();

 }

 ...

 }

 </script>

RICH CONTROLS

 The Calendar

 The Calendar control presents a miniature calendar

that you can place in any web page.

 <asp:Calendar id="MyCalendar" runat="server" />

 lblDates.Text = "You selected these dates:
";

 foreach (DateTime dt in

MyCalendar.SelectedDates)

 {

 lblDates.Text += dt.ToLongDateString() + "
";

 }

FIGURE 10-2. SELECTING MULTIPLE DATES

FORMATTING THE CALENDAR

RESTRICTING DATES

 protected void MyCalendar_DayRender(Object source,

DayRenderEventArgs e)

 {

 // Restrict dates after the year 2013 and those on the

weekend.

 if (e.Day.IsWeekend || e.Day.Date.Year > 2013)

 {

 e.Day.IsSelectable = false;

 }

 protected void MyCalendar_DayRender(Object source,

DayRenderEventArgs e)

 {

 // Check for May 5 in any year, and format it.

 if (e.Day.Date.Day == 5 && e.Day.Date.Month == 5)

 {

 e.Cell.BackColor = System.Drawing.Color.Yellow;

 // Add some static text to the cell.

 Label lbl = new Label();

 lbl.Text = “
My Birthday!”;

 e.Cell.Controls.Add(lbl);

 }

 }

FIGURE 10-4. HIGHLIGHTING A DAY

protected void MyCalendar_SelectionChanged(Object source, EventArgs e)

{

lstTimes.Items.Clear();

switch (MyCalendar.SelectedDate.DayOfWeek)

{

case DayOfWeek.Monday:

// Apply special Monday schedule.

lstTimes.Items.Add(“10:00”);

lstTimes.Items.Add(“10:30”);

lstTimes.Items.Add(“11:00”);

break;

default:

lstTimes.Items.Add(“10:00”);

lstTimes.Items.Add(“10:30”);

lstTimes.Items.Add(“11:00”);

lstTimes.Items.Add(“11:30”);

lstTimes.Items.Add(“12:00”);

lstTimes.Items.Add(“12:30”);

break;

}

}

THE ADROTATOR

 provides a graphic on a page that is chosen randomly

from a group of possible images.

 Every time the page is requested, an image is selected at

random and displayed, which is the rotation indicated by

the name AdRotator.

 One use of the AdRotator is to show banner-style

advertisements on a page, but you can use it anytime

you want to vary an image randomly.

THE ADVERTISEMENT FILE

 The AdRotator stores its list of image files in an

XML file. This file uses the format shown here:

 AdRotator control picks at random from the list of

advertisements

<Advertisements>

<Ad>

<ImageUrl>prosetech.jpg</ImageUrl>

<NavigateUrl>http://www.prosetech.com</NavigateUrl>

<AlternateText>ProseTech Site</AlternateText>

<Impressions>1</Impressions>

<Keyword>Computer</Keyword>

</Ad>

</Advertisements>

 <asp:AdRotator ID="Ads" runat="server"

AdvertisementFile="MainAds.xml"

 Target=”_blank” KeywordFilter=”Computer” />

THE VALIDATION CONTROLS

 Each validation control can be bound to a single
input control. In addition, you can apply more
than one

 validation control to the same input control to
provide multiple types of validation.

 Each validation control can be bound to a single
input control.

 In addition, you can apply more than one
validation control to the same input control to
provide multiple types of validation.

VALIDATION CONTROLS

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

BASEVALIDATOR CLASS

REQUIREDFIELDVALIDATOR CONTROL

 The RequiredFieldValidator control ensures that

the required field is not empty.

RANGEVALIDATOR CONTROL

 The RangeValidator control verifies that the input

value falls within a predetermined range.

COMPAREVALIDATOR CONTROL

 The CompareValidator control compares a value in one

control with a fixed value or a value in another control.

REGULAREXPRESSIONVALIDATOR

 The RegularExpressionValidator allows validating the

input text by matching against a pattern of a regular

expression.

 The regular expression is set in the ValidationExpression

property.

CUSTOMVALIDATOR

 The CustomValidator control allows writing application

specific custom validation routines for both the client side

and the server side validation.

 The client side validation routine should be written in a

scripting language, such as JavaScript or VBScript, which

the browser can understand.

 The server side validation routine must be called from the

control's ServerValidate event handler.

 The server side validation routine should be written in

any .Net language, like C# or VB.Net.

VALIDATIONSUMMARY

 The ValidationSummary control does not perform any

validation but shows a summary of all errors in the page.

 The summary displays the values of the ErrorMessage

property of all validation controls that failed validation.

 The following two mutually inclusive properties list out

the error message:

 ShowSummary : shows the error messages in specified

format.

 ShowMessageBox : shows the error messages in a

separate window.

VALIDATION GROUPS

 Complex pages have different groups of information

provided in different panels.

 In such situation, a need might arise for performing

validation separately for separate group.

 This kind of situation is handled using validation

groups.

 To create a validation group, you should put the input

controls and the validation controls into the same

logical group by setting

their ValidationGroupproperty.

